Modular Algorithms in Computer Algebra

Modular algorithms apply the Chinese remainder theorem to speed up a computation involving polynomials with integer or rational coefficients. They also apply polynomial evaluation and interpolation to speed up a computation involving multivariate polynomials. In the case of the Euclidean algorithm, they are used to avoid the phenomenon of intermediate expression swell.

Michael Monagan, Simon Fraser University (4 lectures, 8 hours)

Lecture 1 : Ring homomorphisms, the Schwartz-Zippel Lemma. The Chinese remainder theorem and algorithm.
    Video   Lec8Anotes.pdf   Lec8Bnotes.pdf   Lec8Handouts.zip

Lecture 2 : A modular algorithm for multiplication in ℤ[x]. Polynomial interpolation, homomorphic imaging.
    Video   Lec9Anotes.pdf   Lec9Bnotes.pdf   Lec9Cnotes.pdf   Lec9Handouts.zip

Lecture 3 : The modular GCD algorithm.
   
Video   Lec11Anotes.pdf   Lec11Bnotes.pdf   Lec11Cnotes.pdf   Lec11Handouts.zip

Lecture 4 : Cost of the modular GCD algorithm. The Sylvester resultant and unlucky primes.
    Video   Lec12Anotes.pdf   Lec12Bnotes.pdf   Lec12Cnotes.pdf