

A Finite Groups Package

Vahid Dabbaghian-Abdoly and Greg Fee

The Centre for Experimental and Constructive Mathematics (CECM)

Simon Fraser University

Introduction

As part of our MITACS research project at SFU we are developing a library of and commands for creating finite groups in Maple. This allows group theorists to use Maple for computations on finite groups. This package contains:

- 1) A finite presentation of all non isomorphic small groups of order up to 200.
- A permutation representation of classical matrix groups of moderate size.
- Finite simple groups including alternating groups, classical and exceptional groups of Lie type, and sporadic groups.
- 4) Functions for creating groups of particular classes such as: cyclic, symmetric, alternating, dihedral, dicyclic and metacyclic.

The storage size of the library is 13 MB.

Small Groups

Contains all groups of small orders up to 200 (see [1] and [3]). The groups are sorted by their orders and they are listed up to isomorphism; that is, for each of the available orders a complete and irredundant list of isomorphism type representatives of groups is given. These groups are available as finitely presented groups.

Classical Matrix Groups

Contains a permutation representation of the general linear, special linear, orthogonal, special orthogonal, unitary and symplectic groups of moderate size, including their projective groups.

Simple Groups

Every finite simple group to be one of the following types:

A cyclic group with prime order.

An alternating group of degree at least 5.

A classical group (projective special linear, symplectic, orthogonal or unitary group over a finite field).

An exceptional or twisted group of Lie type (including the Tits group).

One of 26 left-over groups known as the sporadic groups.

These groups are listed in the Atlas of Finite Groups [2] (see also [4]).

Classical Simple Groups

Contains a permutation representation of moderate size classical simple groups and some twisted groups of Lie type which are,

Chevalley groups $G_2(q)$, $F_4(q)$, $E_6(q)$, $E_7(q)$, $E_8(q)$, Ree and Suzuki groups R(q), Sz(q), Steinberg groups $^3D_4(q)$, $^2E_6(q)$ and Tits group $T = ^2F_4(2)$ '.

Sporadic Groups

Provides a permutation representation of some sporadic simple groups. These are

```
M_{11}, M_{12}, M_{22}, M_{23}, M_{24}
                                            Mathieu groups
J_1, J_2, J_3
                                             Janko groups
                                            Higman-Sims group
McL
                                            McLaughlin group
HΕ
                                            Held group
Co<sub>2</sub>, Co<sub>2</sub>
                                            Conway groups
                                             Suzuki group
Suz
Fi<sub>22</sub>
Ru
                                            Fischer group
                                            Rudvalis group
```

Some Standard Finite Groups

This package has functions for creating some standard finite groups such as alternating, symmetric, cyclic, dicyclic, metacyclic and dihedral groups.

Examples

▼ Small Groups:

```
> WrSmallGroups(192);

| 1543 |
| SmallGrelgroup(4, 2);
| grelgroup(\{al, a2\}, \[ [al, al], \[ \frac{1}{a2}, \frac{1}{al}, a2, al \], [a2, a2] \])
| AllSmallGrelgroups(9);
| grelgroup(\{al, a2\}, \[ \[ \frac{1}{a2}, \frac{1}{al}, a2, al \], [a2, a2, a2], [al, al, al, \frac{1}{a2} \]), grelgroup(\{al, a2\}, \[ [al, al, al], \[ \frac{1}{a2}, \frac{1}{al}, al \])
```

▼ Permutation Representation of Classic Matrix Groups:

```
> GeneralLinearGroup(3, 3);

permgroup on 26 symbols with 2 generators

> ProjGeneralUnitaryGroup(5, 2);

permgroup on 341 symbols with 2 generators

> SymplecticGroup(4, 3);

permgroup on 80 symbols with 2 generators
```

▼ Simple Groups:

▼ Other Finite Groups:

```
> CyclicPermgroup(19);

permgroup on 19 symbols with 1 generators
> DihedralGrelgroup(4);

grelgroup({a,b}, {[a,b,a,b], [b,b], [a,a,a,a]})
```

Commands

The following is the list of available commands in this package.

AllSmallGrelgroups
AllSmallPermgroup
AlternatingGroup
CyclicGrelgroup
CyclicPermgroup
DicyclicGrelgroup
DicyclicPermgroup
DihedralGrelgroup

DihedralPermgroup

ExceptionalGroup GeneralLinearGroup

GeneralOrthogonalGroup

GeneralUnirtaryGroup

MathieuGroup MetacyclicGrelgroup

MetacyclicPermgroup

NrSmallGroups

OrthogonalGroup

ProjGeneralLinearGroup

ProjGeneralUnitaryGroup ProjSpecialLinearGroup

ProjSpecialUnitaryGroup

ProjSymplecticGroup

SpecialLinearGroup

SpecialOrthogonalGroup

SpecialUnitaryGroup SporadicGroup

SymmetricGroup SymplecticGroup

References

[1] H.U. Besche, B. Eick and E. O'Brien, The Small Groups library, 2002. (http://www-public.tu-bs.de:8080/~beick/soft/small/small.html)

[2] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, \emph{Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups}, Claredon Press, Oxford, 1985.

[3] The GAP Group, GAP -- Groups, Algorithms, and Programming, Version 4.4; 2006. (http://www.gap-system.org)

[4] R.A. Wilson et al., ATLAS of Finite Group Representations - Version 3; 2006. (http://brauer.maths.gmul.ac.uk/Atlas/v3/)

Acknowledgments

This work was supported by MITACS NCE and NSERC Canada.

