I have put videos of my computer algebra course lectures (.mp4 files) here along with the handouts (and accompanying Maple worksheets) and my filled in lecture notes here.
Michael Monagan, April 2021.

MACM 401 Lecture Videos

Introduction to Computer Algebra (4 lectures, 8 hours)

Assignment 1: Lectures 1 – 4.

Lecture 1     Integer multiplication: the grade school algorithm, Karatsuba, their complexity, and what is known.

Lecture 2     Analysis of algorithms: O(f(n)), properties, examples. Maple tutorial.

Lecture 3     Integer gcd: Euclid's and Stein's algorithms. Rings, subrings, and zero divisors.

Lecture 4     Integral domains: division, gcds, primes, irreducibles, factorization. Euclidean domains.


Polynomial Algorithms (3 lectures, 6 hours)

Assignment 2: Lectures 5 – 8.

Lecture 5     The extended Euclidean algorithm. The polynomial ring R[x], division in F[x].

Lecture 6     Cost of division and the Euclidean algorithm in F[x], solving diophantine equations in F[x].
                    Multivariate polynomials, exact divison in D[x1,...xn].

Lecture 7     Multivariate gcds: content, pseudo division. The primitive Euclidean algorithm, expression swell.

Lecture 8     Ring homomorphisms, the Schwartz-Zippel Lemma. The Chinese remainder theorem and algorithm.


Modular Algorithms and the FFT (5 lectures, 10 hours)

Assignment 3: Lectures 9 – 12.

Lecture 9     A modular algorithm for multiplication in ℤ[x]. Polynomial interpolation, homomorphic imaging.

Lec10AB.mp4   Lecture 10     Roots of unity, the Fast Fourier Transform. Cost of the FFT and fast polynomial multiplication.

Lecture 11     The modular GCD algorithm.

Lecture 12     The Sylvester resultant. Cost of the modular GCD algorithm.

Lec13ABC.mp4   Lecture 13     Fast integer multiplication using the FFT. Tutorial.


P-adic lifting and Hensel lifting (3 lectures, 6 hours)

Assignment 4: Lectures 14 – 16.

Lecture 14     P-adic representations for ℤ, base conversion. A p-adic iteration for integer square root.

Lecture 15     Computing a square root in ℤ[x] using (1) a p-adic iteration and (2) single point evaluation.

Lecture 16     Linear Hensel lifting in ℤ[x]. Gcds in ℤ[x] using Hensel lifting.


Polynomial Factorization (4 lectures, 8 hours)

Assignment 5: Lectures 17 – 20.

Lecture 17     Square-free factorization. Factoring polynomials in ℤ[x] using Hensel lifting and trial division.

Lecture 18     Factoring polynomials over finite fields using the Cantor-Zassenhaus algorithm.

Lecture 19     Binary powering with remainder and root finding. Representation and differentiation of formulae in Maple.

Lecture 20     Calculating resultants. Polynomial factorization tutorial. The Risch integration algorithm.


Symbolic Integration (5 lectures, 11 hours)

Assignment 6: Lectures 21 – 25.

Lecture 21     Rational function integration: the rational part. Hermite reduction and Horrowitz's algorithm.

Lecture 22     Rational function integration: the logarithmic part. The Trager-Rothstein resultant.

Lecture 23     Elementary function integration: the Risch structure theorem, Liouville's theorem.

Lecture 24     The Risch algorithm: logarithmetic extensions.

Lecture 25     The Risch algorithm: exponential extensions.

Lecture 26     Final exam info + review.


MACM 401 filled in Lecture Notes

Lec1A.pdf   Lec1B.pdf

Lec2A.pdf

Lec3A.pdf   Lec3B.pdf

Lec4A.pdf   Lec4B.pdf

Lec5A.pdf   Lec5B.pdf

Lec6A.pdf   Lec6B.pdf

Lec7A.pdf   Lec7B.pdf   Lec7C.pdf

Lec8A.pdf   Lec8B.pdf

Lec9A.pdf   Lec9B.pdf   Lec9C.pdf

Lec10A.pdf   Lec10B.pdf   Lec10C.pdf

Lec11A.pdf   Lec11B.pdf   Lec11C.pdf

Lec12A.pdf   Lec12B.pdf   Lec12C.pdf

Lec13A.pdf   Lec13C.pdf

Lec14A.pdf   Lec14B.pdf   Lec14C.pdf

Lec15A.pdf   Lec15B.pdf   Lec15C.pdf

Lec16A.pdf   Lec16B.pdf   Lec16C.pdf

Lec17A.pdf   Lec17B.pdf   Lec17C.pdf

Lec18A.pdf   Lec18B.pdf

Lec19A.pdf   Lec19B.pdf

Lec20A.pdf   Lec20B.pdf   Lec20C.pdf

Lec21A.pdf   Lec21B.pdf   Lec21C.pdf

Lec22A.pdf   Lec22B.pdf   Lec22C.pdf   Lec22D.pdf

Lec23A.pdf   Lec23B.pdf   Lec23C.pdf

Lec24A.pdf   Lec24B.pdf   Lec24C.pdf

Lec25A.pdf   Lec25B.pdf   Lec25C.pdf

Lec26B.pdf

MACM 401 Lecture Handouts

Lec1Handouts.zip

Lec2Handouts.zip

Lec3Handouts.zip

Lec5Handouts.zip

Lec6Handouts.zip

Lec7Handouts.zip

Lec8Handouts.zip

Lec9Handouts.zip

Lec10Handouts.zip

Lec11Handouts.zip

Lec13Handouts.zip

Lec14Handouts.zip

Lec15Handouts.zip

Lec16Handouts.zip

Lec17Handouts.zip

Lec18Handouts.zip

Lec19Handouts.zip

Lec20Handouts.zip

Lec21Handouts.zip

Lec22Handouts.zip

Lec23Handouts.zip

Lec24Handouts.zip

Lec25Handouts.zip