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ABSTRACT
We present a new algorithm for performing linear Hensel lifting

on bivariate polynomials over the finite field Z𝑝 for some prime

𝑝 . Our algorithm lifts 𝑛 monic, univariate polynomials to recover

the factors of a polynomial 𝐴(𝑥,𝑦) ∈ Z𝑝 [𝑥,𝑦] which is monic in

𝑥 , and bounded by degrees 𝑑𝑥 = deg(𝐴, 𝑥) and 𝑑𝑦 = deg(𝐴,𝑦).
Our algorithm improves upon Bernardin’s algorithm in [1] and

reduces the number of arithmetic operations in Z𝑝 from𝑂 (𝑛 𝑑2𝑥 𝑑2𝑦)
to 𝑂 (𝑑2𝑥 𝑑𝑦 + 𝑑𝑥 𝑑2𝑦) for 𝑝 ≥ 𝑑𝑥 . Experimental results in C verify

that our algorithm compares favorably with Bernardin’s for large

degree polynomials. Moreover, we’ve implemented a Quadratic

Hensel lifting algorithm in Magma to show that our cubic Linear

Hensel lifting algorithm outperforms Magma’s Quadratic Hensel

lifting for a wide range of input sizes.
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1 INTRODUCTION
Hensel lifting is one of the main tools used to factor polynomials.

It was first used by Zassenhaus in [25] to factor polynomials in

Z[𝑥]. Musser in [18] and Wang and Rothchild in [24] subsequently

developed multivariate Hensel lifting (MHL) to factor polynomi-

als in Z[𝑥1, ..., 𝑥𝑛] in [17]. For a complete description of MHL we

refer the reader to Ch. 6 of [7]. As far as we know, all Computer

Algebra Systems use Hensel lifting to factor polynomials. However,

factorization methods that do not use Hensel lifting are known, for

example, Gao in [5] developed a method based on partial derivatives

and linear algebra.

Hensel lifting can also be used for polynomial GCD computa-

tion. In [17] Moses and Yun applied MHL to compute the greatest

common divisor of two polynomials in Z[𝑥1, ..., 𝑥𝑛]. They called

their algorithm the EZ-GCD algorithm. In [23] Wang improved the

EZ-GCD algorithm for sparse polynomials. Wang’s GCD algorithm

is implemented in Macsyma, Maple and Magma.

In this paper, we are interested in the cost of Hensel lifting when

it is used to factor bivariate polynomials in Z𝑝 [𝑥,𝑦] for a prime
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𝑝 . Our work is motivated by the parallel MHL algorithms of Mon-

agan and Tuncer [16] and Chen and Monagan [4] which reduce

Hensel lifting in Z[𝑥1, . . . , 𝑥𝑛] to many bivariate Hensel lifts in

Z𝑝 [𝑥,𝑦] and which use sparse interpolation. Other works that re-

duce multivariate polynomial factorization to bivariate polynomial

factorization include Kaltofen [10] and Lecerf [13].

We begin with a description of Hensel lifting in 𝑅 [𝑥] where
𝑅 = Z𝑝 [𝑦]. Our description follows von zur Gathen and Gerhard

[6]. Let 𝐴 be a polynomial in 𝑅 [𝑥] which has no repeated factors.

Let 𝑚 be a polynomial in 𝑅 with deg(𝑚,𝑦) ≥ 1. We require the

modulus𝑚 to be relatively prime to lc(𝐴), the leading coefficient of

𝐴. Suppose we are given polynomials 𝑓
(0)
𝑖

for 1 ≤ 𝑖 ≤ 𝑛 that satisfy

(i) 𝐴 −∏𝑛
𝑖=1 𝑓

(0)
𝑖
≡ 0 mod 𝑚,

that is, we are given a factorization of 𝐴 modulo𝑚, and

(ii) gcd(𝑓 (0)
𝑖

, 𝑓
(0)
𝑗
) = 1 in the quotient ring 𝑅 [𝑥]/𝑚 when 𝑖 ≠ 𝑗 .

The input to Hensel lifting is 𝐴, 𝑚, the 𝑓
(0)
𝑖

and a lifting bound

𝑙 ∈ N. The output of Hensel lifting is 𝑛 polynomials 𝑓
(𝑙)
𝑖

in 𝑅 [𝑥]
satisfying

(iii) 𝐴 −∏𝑛
𝑖=1 𝑓

(𝑙)
𝑖
≡ 0 mod 𝑚𝑙

,

(iv) 𝑓
(𝑙)
𝑖
≡ 𝑓
(0)
𝑖

mod 𝑚 for 1 ≤ 𝑖 ≤ 𝑛 and

(v) deg(𝑓 (𝑙)
𝑖

, 𝑦) < deg(𝑚𝑙 , 𝑦) for 1 ≤ 𝑖 ≤ 𝑛.

We say Hensel lifting lifts a factorization of 𝐴 modulo𝑚 to a factor-

ization modulo𝑚𝑙
. Condition (ii) guarantees the existence of the

𝑓
(𝑙)
𝑖

. Condition (v) imposes uniqueness on 𝑓
(𝑙)
𝑖

up to multiplication

by a unit in the quotient ring 𝑅/𝑚𝑙
.

Because we want to apply Hensel lifting in 𝑅 [𝑥] to factor mul-

tivariate polynomials in Z[𝑥1, . . . , 𝑥𝑛], we use a modified specifi-

cation for Hensel lifting in 𝑅 [𝑥] – see Ch. 6 of [7]. Suppose 𝐴 is

monic in 𝑅 [𝑥] and𝐴 factors as𝐴 =
∏𝑛

𝑖=1 𝑓𝑖 with 𝑓𝑖 ∈ 𝑅 [𝑥]. We will

comment on the treatment of the non-monic case in Section 5. In a

multivariate factorization context, we will have chosen an integer 𝛼

and we will have factored 𝐴(𝑥, 𝛼) over Z. By Hilbert irreducibility

[9] (see also [6]) the 𝑓𝑖 (𝑥, 𝛼) are probably irreducible thus starting

with 𝑓
(0)
𝑖

= 𝑓𝑖 (𝑥, 𝛼) we have images of the factors 𝑓𝑖 . Thus for

𝑚 = (𝑦 −𝛼), the 𝑓 (0)
𝑖

satisfy condition (i). Let us assume our choice

of 𝛼 also satisfies (ii).

The input to our Hensel lifting is 𝐴,𝑚 = (𝑦 − 𝛼), and the 𝑓
(0)
𝑖

.

Instead of using a lifting bound 𝑙 to obtain 𝑓
(𝑙)
𝑖

satisfying (iii), we

design the Hensel lifting to stop lifting when

∑𝑛
𝑖=1 deg(𝑓

(𝑘)
𝑖

, 𝑦) ≥
deg(𝐴,𝑦) for some 𝑘 ∈ N, then we test if 𝐴 =

∏𝑛
𝑖=1 𝑓

(𝑘)
𝑖

. If true,

we have factored 𝐴 in Z𝑝 [𝑥,𝑦]. If false, then one of the 𝑓𝑖 (𝑥, 𝛼) is
not irreducible over Z and the multivariate factorization needs to

restart with a new 𝛼 .

https://doi.org/10.1145/XXXXXX.XXXXXX
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There are two constructions of Hensel lifting: Linear Hensel

Lifting (LHL) and Quadratic Hensel Lifting (QHL). We describe

both here for𝑚 = (𝑦 − 𝛼) so that we can compare their cost for

Hensel lifting in Z𝑝 [𝑥,𝑦]. Let 𝑑𝑖 = deg(𝑓𝑖 , 𝑦) and

𝑓𝑖 =

𝑑𝑖∑︁
𝑗=0

𝜎𝑖, 𝑗 (𝑥) (𝑦 − 𝛼) 𝑗 for 𝜎𝑖, 𝑗 ∈ Z𝑝 [𝑥] .

Let 𝜎𝑖, 𝑗 = 0 for 𝑗 > 𝑑𝑖 . For 𝑘 > 0, let

𝑓
(𝑘)
𝑖

=

𝑘−1∑︁
𝑗=0

𝜎𝑖, 𝑗 (𝑥) (𝑦 − 𝛼) 𝑗 . (1)

We call 𝑓
(𝑘)
𝑖

a 𝑘’th order approximation of the factor 𝑓𝑖 . The 𝑓
(𝑘)
𝑖

satisfy 𝐴 −∏𝑛
𝑖=1 𝑓

(𝑘)
𝑖
≡ 0 mod (𝑦 − 𝛼)𝑘 .

In LHL, for 𝑘 = 1, 2, 3, . . . , the 𝜎𝑖,𝑘 are computed and the factors

are updated using 𝑓
(𝑘+1)
𝑖

← 𝑓
(𝑘)
𝑖
+ 𝜎𝑖,𝑘 (𝑥) (𝑦 − 𝛼)𝑘 , that is, the

degree of the factors in 𝑦 increases linearly. An algorithm for LHL

for Z𝑝 [𝑥,𝑦] is presented by Bernardin in [1].

Let 𝑟 = 2
𝑘−1

. In QHL, for 𝑘 = 1, 2, 3, . . . , update polynomials

Δ𝑖 =
𝑟−1∑︁
𝑗=0

𝜎𝑖,𝑟+𝑗 (𝑥) (𝑦 − 𝛼) 𝑗 for 1 ≤ 𝑖 ≤ 𝑛

are computed then the factors are updated using 𝑓
(𝑘+1)
𝑖

← 𝑓
(𝑘)
𝑖
+

Δ𝑖 (𝑥,𝑦) (𝑦 − 𝛼)𝑟 , that is, the degree of the factors in 𝑦 increases

quadratically. QHL is presented in Ch. 15 of [6]. See also Bostan et.

al. [3].

Let 𝑑𝑥 = deg(𝐴, 𝑥) and 𝑑𝑦 = deg(𝐴,𝑦). If fast multiplication for

Z𝑝 [𝑥,𝑦] is available, QHL can be done in𝑂 (𝑀 (𝑑𝑥 ·𝑑𝑦) log2 𝑛) arith-
metic operations in Z𝑝 where𝑀 (𝑑𝑥 · 𝑑𝑦) is the cost of multiplying

two polynomials in Z𝑝 [𝑥,𝑦] of degree 𝑑𝑥 in 𝑥 and 𝑑𝑦 in 𝑦.

The most expensive part of LHL is the computation of the prod-

uct of the factors 𝑃 =
∏𝑛

𝑖=1 𝑓𝑖 . Bernardin’s algorithm computes 𝑃

coefficient by coefficient. Let 𝑃 (𝑘) =
∏𝑛

𝑖=1 𝑓
(𝑘)
𝑖

. At the 𝑘’th step,

it computes coeff (𝑃 (𝑘) (𝑥,𝑦), (𝑦 − 𝛼)𝑘 ) in an efficient way. Both

Bernardin’s algorithm and our algorithm can be viewed as relaxed

Hensel lifting algorithms; they only compute the terms of the prod-

uct

∏𝑛
𝑖=1 𝑓

(𝑘)
𝑖

that we need at step 𝑘 to obtain coeff(𝑃 (𝑘) , (𝑦 −𝛼)𝑘 ).
Other works using relaxed Hensel lifting include Berthomieu and

Lebreton [2] van der Hoeven [21] and Lebreton [12].

Our first contribution is a LHL algorithm for monic 𝐴 for 𝑛 ≥
2 factors that does 𝑂 (𝑑2𝑥𝑑𝑦 + 𝑑𝑥𝑑2𝑦) arithmetic operations in Z𝑝 .

It generalizes the algorithm of Monagan [15] for 𝑛 > 2 factors.

As in [15], it uses classical univariate polynomial evaluation and

interpolation (see Ch. 5 of [7]) on 𝑥 to compute coeff (𝑃 (𝑘) , (𝑦−𝛼)𝑘 ).
In total, our algorithm does 𝑂 (𝑑2𝑥𝑑𝑦 + 𝑑𝑥 𝑑2𝑦) arithmetic operations

in Z𝑝 .
Our first implementation of our algorithmused space for𝑂 (𝑛 𝑑𝑥 𝑑𝑦)

elements of Z𝑝 because it stores the 𝑛 − 1 intermediate products

{∏𝑗

𝑖=1
𝑓
(𝑘)
𝑖

: 2 ≤ 𝑗 ≤ 𝑛}. This is expensive for large 𝑛. Our second
contribution is a redesign of Bernardin’s coefficient update algo-

rithm so that we get an algorithm with the same time complexity of

𝑂 (𝑑2𝑥𝑑𝑦 +𝑑𝑥 𝑑2𝑦) arithmetic operations in Z𝑝 but that requires space

for only 𝑂 (log
2
𝑛 𝑑𝑥 𝑑𝑦) elements of Z𝑝 . We adapt the sub-product

tree algorithm (see Ch. 10 of [6]) for this purpose.

Our third contribution is a C implementation of our new al-

gorithm for Hensel lifting in Z𝑝 [𝑥,𝑦] for primes 𝑝 < 2
63

and a

comparison of it with our Magma implementation of QHL using

Magma’s fast polynomial arithmetic (we implemented Algorithm

15.17 Multifactor Hensel Lifting from [6]). We have also imple-

mented Bernardin’s algorithm in C for comparison. The C code for

our new algorithm and our Magma code for QHL is available on

the web at www.cecm.sfu.ca/~mmonagan/code/BHL . Our Magma

code is also given in Appendix 1.

On our benchmarks for 𝑛 = 4 factors, we find (see Table 1) that

our new algorithm is a factor of 10 to 120 times faster than our

Magma QHL code for 𝑝 = 2
31 − 1 and 8 ≤ 𝑑𝑥 = 𝑑𝑦 ≤ 16384.

Although the Magma implementation is gaining speed relative

to our new algorithm as 𝑑𝑥 and 𝑑𝑦 increase, it never catches up

to our new algorithm before Magma runs out of space on our 64

gigabyte computer. We also noticed that for fixed 𝑑𝑥 and 𝑑𝑦 , our

new algorithm gains speed relative to our Magma QHL code as 𝑛,

the number of factors, increases.

Our C code is being used by Chen and Monagan [4] to factor

multivariate polynomials in Z[𝑥1, . . . , 𝑥𝑛] given by black boxes (see
[11]). Their algorithm reduces MHL to many bivariate Hensel lifts

in Z𝑝 [𝑥,𝑦] .When used to factor multivariate polynomials, because

the degree of the polynomials are often under 100 in practical

applications, we are also interested in when our new algorithm first

beats Bernardin’s algorithm. On our benchmarks, it already beats

Bernardin’s algorithm at degree 𝑑𝑥 = 𝑑𝑦 = 8 for 𝑛 = 4 factors (see

row 𝑑 = 2 in Table 1).

Our paper is organized as follows. Section 2 gives details for

Bernardin’s version of LHL in Z𝑝 [𝑥,𝑦] for 𝑛 ≥ 2 factors and shows

that it has quartic complexity. In Section 3, we develop our cubic

LHL algorithm for Z𝑝 [𝑥,𝑦]. In Section 4 we present benchmarks

comparing the Bernardin’s quartic LHL algorithm, our cubic LHL

algorithm, and our Magma implementation of QHL. We also give

some details about our C implementation. In Section 5, we summa-

rize our contribution.

2 QUARTIC COST HENSEL LIFTING IN Z𝑝 [𝑥,𝑦]
In this section, we will give details on Bernardin’s version of LHL

in Z𝑝 [𝑥,𝑦] for 𝑛 ≥ 2 presented in [1]. His algorithm is similar to

the classical LHL algorithm given in Section 1. The algorithm uses

Hensel lifting to factor a polynomial𝐴 =
∏𝑛

𝑖=1 𝑓𝑖 ∈ Z𝑝 [𝑥,𝑦] assum-

ing we have the relatively prime initial factors 𝑓
(0)
𝑖

= 𝑓𝑖 (𝑥, 𝛼) ∈
Z𝑝 [𝑥] for 1 ≤ 𝑖 ≤ 𝑛 for some 𝛼 ∈ Z𝑝 . The 𝑘’th order approxima-

tions of the factors 𝑓
(𝑘)
𝑖

are the same as in (1).

The difference between the algorithms is the method Bernardin

used to calculate the error. The classical algorithm calculates the

error 𝑒𝑘 of the factorization at step 𝑘 , that is 𝑒𝑘 = 𝐴 −∏𝑛
𝑖=1 𝑓

(𝑘)
𝑖

.

From there, the algorithm calculates 𝑐𝑘 = 𝑒𝑘/(𝑦−𝛼)𝑘 mod (𝑦−𝛼),
then solves the polynomial Diophantine equation

𝑐𝑘 =

𝑛∑︁
𝑖=1

𝜎𝑖,𝑘

𝑓
(0)
𝑖

𝑛∏
𝑗=1

𝑓
(0)
𝑗

for 𝜎𝑖,𝑘 where deg(𝜎𝑖,𝑘 , 𝑥) < deg(𝑓 (0)
𝑖

, 𝑥) for 1 ≤ 𝑖 ≤ 𝑛.

Bernardin noticed that many of the multiplications done in cal-

culating 𝑒𝑘 were unnecessarily repeated. The polynomial 𝐴(𝑥,𝑦)
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can be rewritten as a Taylor series about the point 𝛼 . In other words,

𝐴 =
∑𝑑𝑦
𝑖=0

𝑎𝑖 (𝑦 − 𝛼)𝑖 where 𝑎𝑖 ∈ Z𝑝 [𝑥] are obtained by applying

polynomial long division. Thus, an alternate way to calculate 𝑐𝑘 is

𝑐𝑘 = 𝑎𝑘 − coeff
©«

𝑛∏
𝑖=1

𝑓
(𝑘)
𝑖

, (𝑦 − 𝛼)𝑘ª®¬ , (2)

so we need merely compute Δ(𝑘) = coeff(∏𝑛
𝑖=1 𝑓

(𝑘)
𝑖

, (𝑦 − 𝛼)𝑘 ) for
any given 𝑘 . Bernardin used a combination of convolution and

successive polynomial multiplications to calculate Δ(𝑘) efficiently.

The idea is to compute the product of the factors 𝑓
(𝑘)
𝑖

modulo

(𝑦 −𝛼)𝑘+1 at each step, reusing the sub-products already computed

in the previous step.

At step 𝑘 , we have to compute coeff(∏𝑛
𝑖=1 𝑓

(𝑘)
𝑖

, (𝑦 − 𝛼)𝑘 ) as
described in (2). We define

𝑃
(𝑘)
𝑞 :=

𝑞∏
𝑖=1

𝑓
(𝑘)
𝑖

mod (𝑦 − 𝛼)𝑘+1 (3)

for 2 ≤ 𝑞 ≤ 𝑛 with 𝑐𝑘 = coeff(𝑃 (𝑘)𝑛 , (𝑦 − 𝛼)𝑘 ).
The product of the first two factors gives

𝑃
(𝑘)
2

=

𝑘−1∑︁
𝑖=0

©«
𝑖∑︁
𝑗=0

𝜎1, 𝑗 · 𝜎2,𝑖−𝑗
ª®¬ (𝑦 − 𝛼)𝑖 + ©«

𝑘−1∑︁
𝑗=1

𝜎1, 𝑗 · 𝜎2,𝑘−𝑗
ª®¬ (𝑦 − 𝛼)𝑘

For successive 𝑞 we can compute 𝑃
(𝑘)
𝑞 as

𝑃
(𝑘)
𝑞 =

𝑘−1∑︁
𝑖=0

©«
𝑖∑︁
𝑗=0

𝜌 ( 𝑗) · 𝜎𝑞,𝑖−𝑗
ª®¬ (𝑦 −𝛼)𝑖 + ©«

𝑘∑︁
𝑗=1

𝜌 ( 𝑗) · 𝜎𝑞,𝑘−𝑗
ª®¬ (𝑦 −𝛼)𝑘

with 𝜌 ( 𝑗) := coeff(𝑃 (𝑘)
𝑞−1, (𝑦−𝛼)

𝑗 ). Note that 𝜌 is used exclusively for

simplifying the notation and that the 𝜌’s are different for varying

𝑞 and 𝑘 . We observe that the only terms that we have to compute

and that have not already been computed in the previous step are

𝜎
1,𝑘 · 𝜎2,0 and 𝜎1,0 · 𝜎2,𝑘

when calculating 𝑃
(𝑘)
2

and

𝜌 (0)𝜎𝑞,𝑘

for the subsequent factors. These terms need to be added to 𝑃
(𝑘)
2

, ..., 𝑃
(𝑘)
𝑛

once we calculate 𝜎𝑞,𝑘 for 1 ≤ 𝑞 ≤ 𝑛. When calculating 𝑃
(𝑘+1)
𝑞 in

step 𝑘 + 1, we can reduce the number of multiplications done by

re-using the ones done for 𝑃
(𝑘)
𝑞 . In fact, we can simplify 𝑃

(𝑘+1)
𝑞 to

𝑃
(𝑘+1)
2

= 𝑃
(𝑘)
2
+ ©«

𝑘∑︁
𝑗=1

𝜎1, 𝑗 · 𝜎2,𝑘−𝑗+1
ª®¬ (𝑦 − 𝛼)𝑘+1

for two factors and

𝑃
(𝑘+1)
𝑞 = 𝑃

(𝑘)
𝑞 + ©«

𝑘+1∑︁
𝑗=1

𝜌 ( 𝑗) · 𝜎𝑞,𝑘−𝑗+1
ª®¬ (𝑦 − 𝛼)𝑘+1

for the remaining factors with 𝜌 ( 𝑗) := coeff(𝑃 (𝑘+1)
𝑞−1 , (𝑦 − 𝛼) 𝑗 ).

The products 𝑃
(𝑘)
𝑞 for 2 ≤ 𝑞 ≤ 𝑛 are stored in an 𝑛 × (𝑑𝑦 + 1)

matrix 𝐺 of polynomials in Z𝑝 [𝑥]. The matrix 𝐺 holds 𝑛 × (𝑑𝑦 +
1) × (𝑑𝑥 + 1) elements in Z𝑝 and therefore calculating Δ(𝑘) uses
𝑂 (𝑛 𝑑𝑥 𝑑𝑦) space. We present Bernardin’s algorithm as Algorithm

1 listed below.

Remark: Let 𝜇 = max({deg(𝑓𝑖 , 𝑦) : 1 ≤ 𝑖 ≤ 𝑛}). If 𝐴 has a

factorization 𝐴 =
∏𝑛

𝑖=1 𝑓𝑖 , Algorithm 1 will reconstruct the factors

at step 𝑘 = 𝜇. However, Algorithm 1 will continue until 𝑘 = 𝑑𝑦 . For

steps 𝜇 < 𝑘 ≤ 𝑑𝑦 it uses the following to verify the factorization:

𝐴 =
∏𝑛

𝑖=1 𝑓𝑖 if and only if 𝑐𝑘 = 0 for 𝜇 < 𝑘 ≤ 𝑑𝑦 .

We present two additional sub-algorithms: CoefficientExtraction
which calculates the products 𝑃

(𝑘)
2

, ..., 𝑃
(𝑘)
𝑛 as described previously,

and CoefficientUpdate which adds the missing terms into the prod-

ucts 𝑃
(𝑘)
2

, ..., 𝑃
(𝑘)
𝑛 , stored in the polynomial matrix 𝐺 , during step

𝑘 . These algorithms are denoted by Algorithm 2 and Algorithm 3

respectively. In each algorithm, the order terms on the right count

arithmetic operations in Z𝑝 .

Algorithm 1: Quartic linear Hensel lifting for Z𝑝 [𝑥]:
Monic Case

1 Input: prime 𝑝 , 𝛼 ∈ Z𝑝 , 𝐴 ∈ Z𝑝 [𝑥,𝑦] and
𝑓
(0)
1

, 𝑓
(0)
2

, ..., 𝑓
(0)
𝑛 ∈ Z𝑝 [𝑥] satisfying

(i) 𝐴, 𝑓
(0)
1

, 𝑓
(0)
2

, ..., 𝑓
(0)
𝑛 are monic in 𝑥 ,

(ii) 𝐴(𝑦 = 𝛼) = ∏𝑛
𝑖=1 𝑓

(0)
𝑖

and

(iii) gcd(𝑓 (0)
𝑖

, 𝑓
(0)
𝑗
) = 1 for 𝑖 ≠ 𝑗 .

2 Output: 𝑓1, 𝑓2, ..., 𝑓𝑛 ∈ Z𝑝 [𝑥,𝑦] s.t. 𝐴 =
∏𝑛

𝑖=1 𝑓𝑖 or FAIL.

3 𝑑𝑥 ← deg(𝐴, 𝑥); 𝑑𝑦 ← deg(𝐴,𝑦);

4 for 𝑖 = 1 to 𝑛 do 𝑓𝑖 ← 𝑓
(0)
𝑖

; end
5 Compute 𝑎0, 𝑎1, ..., 𝑎𝑑𝑦 ∈ Z𝑝 [𝑥]

s.t. 𝐴 =
∑𝑑𝑦

𝑘=0
𝑎𝑘 (𝑦 − 𝛼)𝑘 ; . . . . . . . . . . . . . . . . . . . . . .𝑂 (𝑑𝑥 𝑑2𝑦)

6 𝐺1,0 ← 𝑓1;

7 for 𝑖 = 1 to 𝑛 − 1 do
8 𝐺𝑖+1 ,0 ← 𝐺𝑖 ,0 · 𝑓𝑖+1; . . . . . . . . . . . . . . . . . . . . . . . . . . .𝑂 (𝑑2𝑥 )
9 end

10 for 𝑘 = 1 to 𝑑𝑦 do
11 (Δ,𝐺) ← CoefficientExtraction

(𝑝, 𝛼, 𝑘, 𝑓1, 𝑓2, ..., 𝑓𝑛,𝐺)∈ Z𝑝 [𝑥]; . . . . . . . . . . . . . .𝑂 (𝑘 𝑑2𝑥 )
12 𝑐𝑘 ← 𝑎𝑘 − Δ;
13 if

∑𝑛
𝑖=1 deg(𝑓𝑖 , 𝑦) = 𝑑𝑦 and 𝑐𝑘 ≠ 0 then Return FAIL;

14 if 𝑐𝑘 ≠ 0 then
15 Solve

∑𝑛
𝑖=1

𝜎𝑖

𝑓
(0)
𝑖

∏𝑛
𝑗=1 𝑓

(0)
𝑗

= 𝑐𝑘 in Z𝑝 [𝑥] for

𝜎1, 𝜎2, ..., 𝜎𝑛 ∈ Z𝑝 [𝑥]; . . . . . . . . . . . . . . . . . . .𝑂 (𝑛 𝑑2𝑥 )
16 for 𝑖 = 1 to 𝑛 do
17 𝑓𝑖 ← 𝑓𝑖 + 𝜎𝑖 · (𝑦 − 𝛼)𝑘 ; . . . . . . . . . . . . . . . .𝑂 (𝑘 𝑑𝑥 )
18 end
19 𝐺 ← CoefficentUpdate(𝑝, 𝛼, 𝑘, 𝑓1, ..., 𝑓𝑛,𝐺); .𝑂 (𝑛 𝑑2𝑥 )
20 end
21 end
22 if

∑𝑛
𝑖=1 deg(𝑓𝑖 , 𝑦) = 𝑑𝑦 then Return 𝑓1, 𝑓2, ..., 𝑓𝑛 ; end

23 Return FAIL;
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Algorithm 2: Coefficient Extraction

1 Input: prime 𝑝 , 𝛼 ∈ Z𝑝 , 𝑘 ∈ Z+, 𝑓1, 𝑓2, ..., 𝑓𝑛 ∈ Z𝑝 [𝑥,𝑦], 𝐺
an 𝑛 × (𝑑𝑦 + 1) matrix of elements in Z𝑝 [𝑥].

2 Output: Δ =coeff(∏𝑛
𝑖=1 𝑓𝑖 , (𝑦 − 𝛼)𝑘 ) ∈ Z𝑝 [𝑥], 𝐺 an

𝑛 × (𝑑𝑦 + 1) matrix of elements in Z𝑝 [𝑥].
3 MIN← max(0, 𝑘 − deg(𝑓2, 𝑦));
4 MAX← min(𝑘, deg(𝑓1, 𝑦));
5 𝐺

2,𝑘 ←
∑𝑀𝐴𝑋

𝑗=𝑀𝐼𝑁
coeff(𝑓1, (𝑦 − 𝛼) 𝑗 ) ·

coeff(𝑓2, (𝑦 − 𝛼)𝑘−𝑗 ); . . . . . . . . . . . . . . . . . . . . . . . . . . .𝑂 (𝑘𝑑2𝑥 )
6 𝑑 ← deg(𝑓1, 𝑦) + deg(𝑓2, 𝑦);
7 for 𝑖 = 3 to 𝑛 do
8 𝛿 ← 𝑑 ; 𝑑 ← 𝑑 + deg(𝑓𝑖 , 𝑦);
9 if 𝑘 ≤ 𝑑 then
10 MIN← max(0,𝑘 − 𝛿); MAX← min(𝑘 ,deg(𝑓𝑖 , 𝑦));

11 𝐺𝑖,𝑘 ←
∑𝑀𝐴𝑋

𝑗=𝑀𝐼𝑁
𝐺𝑖−1 ,𝑘−𝑗 ·

coeff(𝑓𝑖 , (𝑦 − 𝛼) 𝑗 ); . . . . . . . . . . . . . . . . . . . . . . .𝑂 (𝑘𝑑2𝑥 )
12 end
13 end
14 Return (𝐺𝑛,𝑘 ,𝐺);

The most expensive operation in Algorithm 1 is the computation

of Δ(𝑘) using the CoefficientExtraction sub-algorithm during Line 11.

The cost of Line 11 is 𝑂 (𝑘 𝑑2𝑥 ), so it does

∑𝑑𝑦

𝑘=1
𝑂 (𝑘 𝑑2𝑥 ) = 𝑂 (𝑑2𝑥 𝑑2𝑦)

arithmetic operations in Z𝑝 .

Algorithm 3: Coefficient Update

1 Input: prime 𝑝 , 𝛼 ∈ Z𝑝 , 𝑘 ∈ Z+, 𝑓1, 𝑓2, ..., 𝑓𝑛 ∈ Z𝑝 [𝑦], 𝐺 an

𝑛 × (𝑑𝑦 + 1) matrix of elements in Z𝑝 .

2 Output: 𝐺 an 𝑛 × (𝑑𝑦 + 1) matrix of elements in Z𝑝 [𝑥].
3 if 𝑛 > 2 then
4 𝑡 ← coeff(𝑓1, (𝑦 − 𝛼)𝑘 );
5 for 𝑖 = 2 to 𝑛 do
6 // 𝑡 =

∑𝑖
𝑗=1

𝜎 𝑗,𝑘

𝑓
(0)
𝑗

∏𝑖
𝑚=1 𝑓

(0)
𝑚

7 𝑡 ← coeff(𝑓𝑖 , (𝑦 − 𝛼)0) · 𝑡 +
coeff(𝑓𝑖 , (𝑦 − 𝛼)𝑘 ) ·𝐺𝑖−1,0; . . . . . . . . . . . . . . . . 𝑂 (𝑑2𝑥 )

8 𝐺𝑖,𝑘 ← 𝐺𝑖,𝑘 + 𝑡 ; . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑂 (𝑑2𝑥 )
9 end

10 end
11 Return 𝐺 ;

3 CUBIC COST HENSEL LIFTING IN Z𝑝 [𝑥,𝑦]
In this section, we develop a cubic cost Hensel lifting algorithm

which improves upon the arithmetic and space cost of Bernardin’s

quartic cost LHL algorithm. We state the key result of this paper as

Theorem 1. We will justify the result of the theorem in this section.

Theorem 3.1. Let 𝐴 ∈ Z𝑝 [𝑥,𝑦], 𝑑𝑥 = deg(𝐴, 𝑥) > 1, and 𝑑𝑦 =

deg(𝐴,𝑦) > 1. Suppose 𝐴 =
∏𝑛

𝑖=1 𝑓𝑖 and we are given pairwise
relatively prime images 𝑓𝑖 (𝑥, 𝛼) for 1 ≤ 𝑖 ≤ 𝑛 for some 𝛼 ∈ Z𝑝 . If
𝑝 ≥ 𝑑𝑥 , we can compute 𝑓1, 𝑓2, . . . , 𝑓𝑛
(i) using 𝑂 (𝑑2𝑥 𝑑𝑦 + 𝑑𝑥 𝑑2𝑦) arithmetic operations in Z𝑝 , and
(ii) using space for 𝑂 (log

2
𝑛 𝑑𝑥 𝑑𝑦) elements of Z𝑝 .

We made two improvements to Bernardin’s algorithm. The first

improvement changed how we calculate Δ(𝑘) (𝑥), while the second
improvement changed how we calculated the required coefficient

of the product

∏𝑛
𝑖=1 𝑓

(𝑘)
𝑖

during each iteration of Algorithm 1.

The arithmetic cost of Algorithm 1, described in Section 2, is

dominated by Line 11. Therefore, to reduce the cost of the algorithm,

a better method is needed to compute Δ(𝑘) (𝑥) =coeff(∏𝑛
𝑖=1 𝑓

(𝑘)
𝑖

,

(𝑦 −𝛼)𝑘 ) for a given 1 ≤ 𝑘 ≤ 𝑑𝑦 . Instead of computing the product

of 𝑛 bivariate polynomials during step 𝑘 of the algorithm, we use

a system of polynomial evaluation, single integer multiplication

in Z𝑝 , and interpolation to compute Δ(𝑘) . We begin by evaluating

each of the 𝑛 bivariate polynomials 𝑓
(𝑘)
1

, 𝑓
(𝑘)
2

, ..., 𝑓
(𝑘)
𝑛 ∈ Z𝑝 [𝑥,𝑦]

at 𝑥 = 𝛽 𝑗 for 0 ≤ 𝑗 < 𝑑𝑥 where 𝛽 𝑗 ∈ Z𝑝 . We discuss the evaluation

points we chose in Section 4.1. Next, we compute the coefficient of

(𝑦 − 𝛼)𝑘 for the product of evaluated polynomials at each of the 𝑑𝑥
evaluation points,

Δ
(𝑘)
𝑗

= coeff

©«
𝑛∏
𝑖=1

𝑓
(𝑘)
𝑖
(𝛽 𝑗 , 𝑦), (𝑦 − 𝛼)𝑘

ª®¬ for 0 ≤ 𝑗 < 𝑑𝑥 .

Finally, we interpolate the set {Δ(𝑘)
0

, ...,Δ
(𝑘)
𝑑𝑥−1} in𝑥 to obtainΔ

(𝑘) (𝑥).
This method of calculating Δ(𝑘) (𝑥) is presented as a homomor-

phism diagram in Figure 1.

𝑓
(𝑘)
1

, 𝑓
(𝑘)
2

, ..., 𝑓
(𝑘)
𝑛 ∈ Z𝑝 [𝑥,𝑦] Δ(𝑘) ∈ Z𝑝 [𝑥]

𝑓
(𝑘)
1, 𝑗

, 𝑓
(𝑘)
2, 𝑗

, ..., 𝑓
(𝑘)
𝑛,𝑗
∈ Z𝑝 [𝑦] Δ

(𝑘)
𝑗
∈ Z𝑝

coeff

(∏𝑛
𝑖=1 𝑓

(𝑘 )
𝑖

, (𝑦−𝛼)𝑘
)

evaluate 𝑓
(𝑘 )
𝑖,𝑗

= 𝑓
(𝑘 )
𝑖
(𝛽 𝑗 , 𝑦) at 𝑥=𝛽 𝑗

for 0≤ 𝑗<𝑑𝑥 over 1≤𝑖≤𝑛

coeff

(∏𝑛
𝑖=1 𝑓

(𝑘 )
𝑖,𝑗

, (𝑦−𝛼)𝑘
)

for 0≤ 𝑗<𝑑𝑥

interpolate 𝑥

Solve Δ(𝛽 𝑗 )=Δ𝑗 over 0≤ 𝑗<𝑑𝑥

Figure 1: Homomorphism diagram for computing Δ(𝑥) at
iteration 𝑘 ≥ 1

The second improvement we’ve implemented is how we cal-

culate the product

∏𝑛
𝑖=1 𝑓

(𝑘)
𝑖, 𝑗
∈ Z𝑝 [𝑦] for 0 ≤ 𝑗 < 𝑑𝑥 . When

Bernardin calculated Δ(𝑥), he multiplied the 𝑛 polynomials sequen-

tially. By doing this, Bernardin had to store the results in a matrix of

size 𝑂 (𝑛 𝑑𝑥 𝑑𝑦). Instead, we chose to multiply the factors together

as pairs. For example, we first multiply the initial factors as the

products 𝑓
(𝑘)
1, 𝑗

𝑓
(𝑘)
2, 𝑗

, 𝑓
(𝑘)
3, 𝑗

𝑓
(𝑘)
4, 𝑗

, ..., 𝑓
(𝑘)
𝑛−1, 𝑗 𝑓

(𝑘)
𝑛,𝑗

. We then multiply those

products together as pairs, i.e.

∏
4

𝑖=1 𝑓
(𝑘)
𝑖, 𝑗

, ...,
∏𝑛

𝑖=𝑛−3 𝑓
(𝑘)
𝑖, 𝑗

. We re-

peat this process until we arrive at the final product

∏𝑛
𝑖=1 𝑓

(𝑘)
𝑖, 𝑗

. As

for Bernadin’s algorithm we will store these polynomial products

in the 𝐺 matrix.

For simplicity, let 𝑛 = 2
ℓ
for some ℓ ∈ N. We define

𝑃
(𝑘)
𝑞,𝑟 :=

𝑟2𝑞∏
𝑖=(𝑟−1)2𝑞+1

𝑓
(𝑘)
𝑖, 𝑗

mod (𝑦 − 𝛼)𝑘+1 (4)
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with 𝑐𝑘 :=coeff(𝑃 (𝑘)
ℓ,1

, (𝑦 − 𝛼)𝑘 ) for 1 ≤ 𝑞 ≤ ℓ and 1 ≤ 𝑟 ≤ 2
ℓ−𝑞

.

In the following, we will denote the coefficients of (𝑦 − 𝛼) 𝑗 in
𝑓
(𝑘)
𝑖

as 𝜎𝑖, 𝑗 as they are defined in (1). The product of the initial

pairs gives

𝑃
(𝑘)
1,𝑟

=

𝑘−1∑︁
𝑠=0

©«
𝑠∑︁

𝑡=0

𝜎2𝑟−1,𝑡 · 𝜎2𝑟,𝑠−𝑡
ª®¬ (𝑦−𝛼)𝑠+©«

𝑘−1∑︁
𝑡=1

𝜎2𝑟−1,𝑡 · 𝜎2𝑟,𝑘−𝑡
ª®¬ (𝑦−𝛼)𝑘

for 1 ≤ 𝑟 ≤ 2
ℓ−1

. Let 𝜌
(𝑡 )
𝑟 :=coeff(𝑃𝑞−1,𝑟 , (𝑦 − 𝛼)𝑡 ). For successive

𝑞 we can compute 𝑃
(𝑘)
𝑞,𝑟 as

𝑃
(𝑘)
𝑞,𝑟 =

𝑘∑︁
𝑠=0

©«
𝑠∑︁

𝑡=0

𝜌
(𝑡 )
2𝑟−1 · 𝜌

(𝑠−𝑡 )
2𝑟

ª®¬ (𝑦 − 𝛼)𝑠
for 2 ≤ 𝑞 ≤ ℓ and 1 ≤ 𝑟 ≤ 2

ℓ−𝑞
for each 𝑞. Note that 𝜌2𝑟−1 and 𝜌2𝑟

are used exclusively to simplify the notation and that the 𝜌’s are

different for varying 𝑞, 𝑟 and 𝑡 . We observe that the only terms that

we have to compute and that have not already been computed in

the previous steps are

𝜎
2𝑟−1,𝑘 · 𝜎2𝑟,0 and 𝜎2𝑟−1,0 · 𝜎2𝑟,𝑘

in the initial pairs 𝑃1,𝑟 for 1 ≤ 𝑟 ≤ 2
ℓ−1

. These terms will also be

absent from any of the calculations which produce the polynomials

𝑃𝑞,𝑟 for 2 ≤ 𝑞 ≤ ℓ and 1 ≤ 𝑟 ≤ 2
ℓ−𝑞

.

By making these changes, we present our cubic LHL algorithm

as Algorithm 4. The main difficulty in understanding and imple-

menting the Algorithm 4 is the indexing. To verify that the indexing

of the pseudo-code in the paper is correct, we re-implemented the

algorithms in Maple using the pseudo-code.

We begin our analysis with the evaluation of the 𝑛 bivariate

polynomials 𝑓
(𝑘)
1

, ..., 𝑓
(𝑘)
𝑛 ∈ Z𝑝 [𝑥,𝑦] at 𝑥 = 𝛽 𝑗 for 0 ≤ 𝛽 𝑗 < 𝑑𝑥 . By

applying Horner’s method at Lines 14 and 31, we can evaluate all of

the 𝑛 polynomials at 𝛽 𝑗 ∈ Z𝑝 using𝑂 (𝑑𝑥𝑑𝑦) arithmetic operations.

Thus, evaluating has a total cost of

∑𝑑𝑥−1
𝑖=0

𝑂 (𝑑𝑥𝑑𝑦) = 𝑂 (𝑑2𝑥𝑑𝑦).
Next, we compute Δ

(𝑘)
𝑗

as described above. We modified Algorithm

2 to multiply polynomials in Z𝑝 [𝑦] instead of Z𝑝 [𝑦] [𝑥]. Addition-
ally, we modified Algorithm 2 to multiply the polynomials as pairs

instead of sequentially. We present this algorithm as Algorithm 5.

Algorithm 5 has an arithmetic complexity of 𝑂 (𝑘𝑛) which is

bounded above by 𝑂 (𝑑𝑦). The overall cost of this sub-algorithm is∑𝑑𝑦
𝑖=1

∑𝑑𝑥−1
𝑗=0

𝑂 (𝑑𝑦) = 𝑂 (𝑑𝑥 𝑑2𝑦).
Finally, we use Lagrange interpolation at Line 23 of Algorithm 4

to recover Δ(𝑘) (𝑥) from {Δ(𝑘)
0

, ...,Δ
(𝑘)
𝑑𝑥−1}. Lagrange interpolation

has an arithmetic cost of 𝑂 (𝑑2𝑥 ), so, accounting for the loop on 𝑘 it

has an overall cost of 𝑂 (𝑑2𝑥𝑑𝑦).
We conclude that our method of calculating Δ(𝑘) has an arith-

metic cost of 𝑂 (𝑑2𝑥𝑑𝑦 + 𝑑𝑥𝑑2𝑦). An iterative method for solving the

multi-Diophantine equation

∑𝑛
𝑖=1 𝜎𝑖𝑀𝑖 = 𝑐𝑘 in line 27 of Algorithm

4 is is presented in Ch. 6 of [7]. The analysis in [19] shows that it

can be done in 𝑂 (𝑑2𝑥 ) arithmetic operations in Z𝑝 . Accounting for

the loop on 𝑘 the total cost is 𝑑𝑦 𝑂 (𝑑2𝑥 ) = 𝑂 (𝑑2𝑥 𝑑𝑦).
We have two more operations to consider in our cubic LHL

algorithm. Firstly, like Algorithm 1, we need a way to update the

products stored in𝐺 after we calculate 𝜎1, ..., 𝜎𝑛 in Line 27. We can

Algorithm 4: Cubic Bivariate Hensel Lifting Algorithm:

Monic Case

1 Input: prime 𝑝 , 𝛼 ∈ Z𝑝 , 𝐴 ∈ Z𝑝 [𝑥,𝑦] and
𝑓
(0)
1

, 𝑓
(0)
2

, ..., 𝑓
(0)
𝑛 ∈ Z𝑝 [𝑥] satisfying

(i) 𝐴, 𝑓
(0)
1

, 𝑓
(0)
2

, ..., 𝑓
(0)
𝑛 are monic in 𝑥 ,

(ii) 𝐴(𝑦 = 𝛼) = 𝑓
(0)
1

𝑓
(0)
2

...𝑓
(0)
𝑛 and

(iii) gcd(𝑓 (0)
𝑖

, 𝑓
(0)
𝑗
) = 1 for 𝑖 ≠ 𝑗 .

2 Output: 𝑓1, 𝑓2, ..., 𝑓𝑛 ∈ Z𝑝 [𝑥,𝑦] s.t. 𝐴 = 𝑓1 𝑓2 ... 𝑓𝑛 or FAIL.

3 𝑑𝑥 ← deg(𝐴, 𝑥); 𝑑𝑦 ← deg(𝐴,𝑦);

4 𝑡 ← 𝑛; 𝑛𝑝 ← 1; 𝑀 ←∏𝑛
𝑗=1 𝑓

(0)
𝑗

;

5 while 𝑡 > 1 do 𝑛𝑝 ← 𝑛𝑝 + 𝑡 ; 𝑡 ← ⌈𝑡/2⌉; end
6 for 𝑗 = 0 to 𝑑𝑥 − 1 do
7 for 𝑖 = 0 to 𝑛𝑝 − 1 do
8 𝐺 𝑗,𝑖 , 𝐷 𝑗,𝑖 , 𝑆 𝑗,𝑖 ← Array(0..0), 0, 1;
9 end

10 end
11 Compute 𝑎0, 𝑎1, ..., 𝑎𝑑𝑦 ∈ Z𝑝 [𝑥] s.t.

𝐴 =
∑𝑑𝑦

𝑘=0
𝑎𝑘 (𝑦 − 𝛼)𝑘 ; . . . . . . . . . . . . . . . . . . . . . . . . 𝑂 (𝑑𝑥 𝑑2𝑦)

12 for 𝑖 = 1 to 𝑛 do
13 𝑓𝑖 ← 𝑓

(0)
𝑖

; 𝑀𝑖 ← 𝑀/𝑓 (0)
𝑖

;

14 𝐺 𝑗,𝑖,0 ← 𝑓
(0)
𝑖
(𝑥 = 𝛽 𝑗 ) ∈ Z𝑝 for 0 ≤ 𝑗 < 𝑑𝑥 ;

15 end
16 for 𝑗 = 0 to 𝑑𝑥 − 1 do
17 (Δ 𝑗 ,𝐺 𝑗 , 𝑆 𝑗 , 𝐷 𝑗 ) ← CoefficientExtraction

(𝑝, 𝛼, 0, 𝑛𝑝, 𝑆 𝑗 , 𝐷 𝑗 ,𝐺 𝑗 );

18 end
19 for 𝑘 = 1 to 𝑑𝑦 do
20 for 𝑗 = 0 to 𝑑𝑥 − 1 do
21 (Δ 𝑗 ,𝐺 𝑗 , 𝑆 𝑗 , 𝐷 𝑗 ) ← CoefficientExtraction

(𝑝, 𝛼, 𝑘, 𝑛𝑝, 𝑆 𝑗 , 𝐷 𝑗 ,𝐺 𝑗 ); . . . . . . . . . . . . . . . . . . . .𝑂 (𝑘 𝑛)
22 end
23 interpolate Δ(𝑥) ∈ Z𝑝 [𝑥] s.t. Δ(𝛽 𝑗 ) = Δ 𝑗 ; . . . . . . 𝑂 (𝑑2𝑥 )
24 𝑐𝑘 ← 𝑎𝑘 − Δ ;

25 if
∑𝑛
𝑖=1 deg(𝑓𝑖 , 𝑦) = 𝑑𝑦 and 𝑐𝑘 ≠ 0 then Return FAIL;

26 if 𝑐𝑘 ≠ 0 then
27 Solve

∑𝑛
𝑖=1 𝜎𝑖𝑀𝑖 = 𝑐𝑘 for 𝜎1, ..., 𝜎𝑛 ∈ Z𝑝 [𝑥] with

deg(𝜎𝑖 , 𝑥) < deg(𝑓 (0)
𝑖

, 𝑥); . . . . . . . . . . . . . . . . .𝑂 (𝑑2𝑥 )
28 for 𝑖 = 1 to 𝑛 do
29 𝑓𝑖 ← 𝑓𝑖 + 𝜎𝑖 · (𝑦 − 𝛼)𝑘 ;
30 for 𝑗 = 0 to 𝑑𝑥 − 1 do
31 𝑠 ← 𝜎𝑖 (𝑥 = 𝛽 𝑗 ) ∈ Z𝑝 ; . . . . . . . . 𝑂 (deg(𝑓𝑖 , 𝑥))
32 if 𝑠 ≠ 0 then
33 (𝐺 𝑗,𝑖 , 𝑆 𝑗,𝑖 ) ← Extend(𝑆 𝑗,𝑖 ,𝐺 𝑗,𝑖 , 𝐷 𝑗,𝑖 , 𝑘);

34 𝐷 𝑗,𝑖 ← 𝑘 ; 𝐺 𝑗,𝑖,𝑘 ← 𝑠;

35 end
36 end
37 end
38 (𝐺 𝑗 , 𝑆 𝑗 , 𝐷 𝑗 ) ←CoefficientUpdate(𝑝, 𝛼, 𝑘,

𝑛𝑝, 𝑆 𝑗 , 𝐷 𝑗 ,𝐺 𝑗 ) for 0 ≤ 𝑗 ≤ 𝑑𝑥 − 1 ; . . . . . . . 𝑂 (𝑛 𝑑𝑥 )
39 end
40 end
41 if

∑𝑛
𝑖=1 deg(𝑓𝑖 , 𝑦) = 𝑑𝑦 then Return 𝑓1, 𝑓2, ..., 𝑓𝑛 ; end

42 Return FAIL;



ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France. Michael Monagan and Garrett Paluck

Algorithm 5: Cubic CoefficientExtraction algorithm

1 Input: prime 𝑝 , 𝛼 ∈ Z𝑝 , 𝑘 ∈ Z, 𝑛𝑝 ∈ Z+, 𝑆, 𝐷 ∈ Z𝑛𝑝 , and 𝐻
an array of arrays of length 𝑛𝑝 , the lengths of each array

are stored in 𝑆 .

2 Output: Δ = coeff(∏𝑛
𝑖=1 𝑓𝑖 , (𝑦 − 𝛼)𝑘 ) ∈ Z𝑝 , 𝐻 the array of

arrays of length 𝑛𝑝 , and 𝑆, 𝐷 ∈ Z𝑛𝑝 .
3 𝑡 ← 𝑛; 𝑠 ← 0;

4 while 𝑡 > 1 do
5 𝑖 ← 0;

6 while 𝑖 < ⌊𝑡/2⌋ do
7 𝑑 ← 𝐷𝑠+2𝑖 + 𝐷𝑠+2𝑖+1; 𝑚 ← 𝑠 + 𝑡 + 𝑖;
8 (𝐻𝑚, 𝑆𝑚) ←Extend(𝑆𝑚, 𝐻𝑚, 𝐷𝑚, 𝑑);

9 if 𝑘 ≤ 𝑑 then
10 MIN, MAX← max(0, 𝑘 −𝐷𝑠+2𝑖+1),min(𝑘, 𝐷𝑠+2𝑖 );
11 𝐻𝑚,𝑘 ←

∑𝑀𝐴𝑋
ℓ=𝑀𝐼𝑁

𝐻𝑠+2𝑖,ℓ · 𝐻𝑠+2𝑖+1,𝑘−ℓ ; . . . . 𝑂 (𝑘)
12 end
13 𝑖 ← 𝑖 + 1;
14 end
15 if 𝑡 is odd then
16 𝑚 ← 𝑠 + 𝑡 + 𝑖;
17 (𝐻𝑚, 𝑆𝑚) ←Extend(𝑆𝑚, 𝐻𝑚, 𝐷𝑚, 𝐷𝑠+2𝑖 );
18 if 𝐷𝑠+2𝑖 ≥ 𝑘 then
19 𝐷𝑚 ← 𝐷𝑠+2𝑖 𝐻𝑚,𝑘 ← 𝐻𝑠+2𝑖,𝑘
20 end
21 end
22 𝑠 ← 𝑠 + 𝑡 ; 𝑡 ← ⌈𝑡/2⌉;
23 end
24 if 𝑘 + 1 > 𝑆𝑠 then Return 0; end
25 Return (𝐻𝑠,𝑘 , 𝐻, 𝑆, 𝐷);

do this by modifying Algorithm 3 similarly to how we modified

Algorithm 2.Wemultiply polynomials in Z𝑝 [𝑦] instead of Z𝑝 [𝑥] [𝑦]
and we account for the fact that polynomials are multiplied as pairs

instead of sequentially. We present this algorithm as Algorithm 6.

Algorithm 6 does 𝑂 (𝑛) multiplications. Accounting for the loops

in Lines 19 and 38 of Algorithm 4, the total number of operations

of Algorithm 6 is 𝑂 (𝑛 𝑑𝑥 𝑑𝑦). This ends the proof of Theorem 1 (i).

The second and final problem is how we store the polynomials

𝑃
(𝑘)
𝑞,𝑟 ∈ Z𝑝 [𝑦] for 1 ≤ 𝑞 ≤ ℓ and 1 ≤ 𝑟 ≤ 2

ℓ−𝑞
in the matrix 𝐺 . As a

reminder to the reader, we assumed 𝑛 = 2
ℓ
for some ℓ ∈ N and there

is a different set of 𝑃
(𝑘)
𝑞,𝑟 polynomials for each of the 𝑑𝑥 evaluation

points. 𝐺 is a 𝑑𝑥 × 𝑛𝑝 matrix, where each entry is a polynomial in

Z𝑝 [𝑦]. The term 𝑛𝑝 refers to the number of polynomials calculated

in (4), that is 𝑛𝑝 = |{𝑃𝑞,𝑟 : 1 ≤ 𝑞 ≤ ℓ, 1 ≤ 𝑟 ≤ 2
ℓ−𝑞}|. Each

polynomial may require a different amount of space allocated to it.

Consider the set of polynomials 𝑃
(𝑘)
𝑞,𝑟 for a particular 𝑞. This

set contains some combination of products of the polynomials

𝑓
(𝑘)
1, 𝑗

, ..., 𝑓
(𝑘)
𝑛,𝑗

and therefore requires at most 𝑑𝑦 + 𝑛 elements of Z𝑝
in memory if one accounts for the constants. We have elected to

dynamically store the coefficients for each polynomial. We initially

give each polynomial 𝑃
(0)
𝑞,𝑟 a single element of memory as they are

initialized as constants at Line 14. When the polynomials grows

to need more space, we allocate a new block of memory of size 2
𝑡
,

where 𝑡 is the smallest integer such that deg(𝑃 (𝑘)𝑞,𝑟 , 𝑦) + 1 ≤ 2
𝑡
.

Algorithm 6: Cubic CoefficientUpdate Algorithm

1 Input: prime 𝑝 , 𝛼 ∈ Z𝑝 , 𝑘 ∈ Z+, 𝑛𝑝 ∈ Z+, 𝑆, 𝐷 ∈ Z𝑛𝑝 , and 𝐻
an array of arrays of length 𝑛𝑝 , the lengths of each array

are stored in 𝑆 .

2 Output:the list of arrays 𝐻 , and the arrays 𝑆 and 𝐷 .

3 𝑠 ← 0; 𝑡 ← 𝑛;

4 while 𝑡 > 1 do
5 𝑖 ← 0;

6 while 𝑖 < ⌊𝑡/2⌋ do
7 if 𝑠 = 0 then
8 𝑇𝑖 ← 0;

9 if 𝐷2𝑖 = 𝑘 then 𝑇𝑖 ← 𝐻𝑠+2𝑖,𝑘 · 𝐻𝑠+2𝑖+1,0;
10 if 𝐷2𝑖+1 = 𝑘 then 𝑇𝑖 ← 𝑇𝑖 + 𝐻𝑠+2𝑖,0 · 𝐻𝑠+2𝑖+1,𝑘 ;
11 else
12 𝑇𝑖 ← 𝐻𝑠+2𝑖,0 ·𝑇2𝑖+1 + 𝐻𝑠+2𝑖+1,0 ·𝑇2𝑖 ;
13 end
14 𝑚 ← 𝑠 + 𝑡 + 𝑖; 𝑑 ← 𝐷𝑠+2𝑖 + 𝐷𝑠+2𝑖+1;
15 (𝐻𝑚, 𝑆𝑚) ← Extend(𝑆𝑚, 𝐻𝑚, 𝐷𝑚, 𝑑);

16 𝐻𝑚,𝑘 ← 𝐻𝑚,𝑘 +𝑇𝑖 ;
17 𝐷𝑚 ← 𝑑 ; 𝑖 ← 𝑖 + 1;
18 end
19 if 𝑡 is odd then
20 𝑇𝑖 ← 𝐻𝑠+2𝑖,𝑘 ; 𝑚 ← 𝑠 + 𝑡 + 𝑖;
21 (𝐻𝑚, 𝑆𝑚) ← Extend(𝐻𝑚, 𝑆𝑚, 𝐷𝑚, 𝐷𝑠+2𝑖 );
22 𝐻𝑚,𝑘 ← 𝑇𝑖 ; 𝐷𝑚 ← 𝐷𝑠+2𝑖
23 end
24 𝑠 ← 𝑠 + 𝑡 ; 𝑡 ← ⌈𝑡/2⌉;
25 end
26 Return (𝐻, 𝑆, 𝐷);

For a particular 𝑞, we can store the polynomials 𝑃
(𝑘)
𝑞,𝑟 for 1 ≤

𝑟 ≤ 2
ℓ−𝑞

using at most 4(𝑑𝑦 + 𝑛) elements of space throughout the

execution of Algorithm 4. Therefore, since there are ℓ values for 𝑞,

and we must repeat this process for each of the𝑑𝑥 evaluation points,

the matrix𝐺 will store as much as 4𝑑𝑥 ×⌈log2 𝑛⌉× (𝑑𝑦 +𝑛) elements

of Z𝑝 . Thus, our cubic LHL algorithm uses 𝑂 (log
2
𝑛 𝑑𝑥 𝑑𝑦) space.

This completes our proof of Theorem 1 (ii).

Algorithm 7: Extend Algorithm

1 Input: 𝑆 ∈ Z, 𝐴 an array of length 𝑆 and 𝑑𝑂𝑙𝑑, 𝑑𝑁𝑒𝑤 ∈ Z
2 Output: an array of elements in Z𝑝 , the length of the array

3 if 𝑑𝑁𝑒𝑤 + 1 ≤ 𝑆 then Return (𝐴, 𝑆); end
4 𝑘 ← ⌈log

2
(𝑑𝑁𝑒𝑤 + 1)⌉;

5 𝐵 ← Array(0..2𝑘 − 1);
6 for 𝑖 = 0 to 𝑑𝑂𝑙𝑑 do 𝐵𝑖 ← 𝐴𝑖 ; end
7 for 𝑖 = 𝑑𝑂𝑙𝑑 + 1 to 2

𝑘 − 1 do 𝐵𝑖 ← 0; end
8 Return (𝐵, 2𝑘 );

We present the algorithm which allocates more space for the

polynomials in matrix 𝐺 as Algorithm 7. The notation used in

Algorithm 7 is based on Maple notation where it’s possible to create

and return an array from within a local function, as well as store an

array of arbitrary size within a matrix. In our C implementation, we
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initially allocate an array of pointers of size 𝑑𝑥 × 𝑛𝑝 , each pointing

at a single block of memory. When a polynomial needs more space,

we use the next available 2
𝑡
contiguous spaces to store the larger

polynomial. The total storage used for the factors and their products

is 4𝑑𝑥 × ⌈log2 𝑛⌉ × (𝑑𝑦 +𝑛) words for the coefficients and for 𝑑𝑥 ×𝑛𝑝
words for the pointers.

4 IMPLEMENTATION AND BENCHMARKS
FOR Z𝑝 [𝑥,𝑦]

Table 1 shows the timings for Hensel lifting in Z𝑝 [𝑥,𝑦] for three
algorithms using prime 𝑝 = 2

31 − 1. The timings were obtained

using a server with 64 gigabytes of RAM and two Intel Xeon E5-2660

8 core processors running at 2.20GHz base and 3.00GHz turbo.

For our benchmarks in Table 1, we factor a polynomial

𝐴 = 𝑓1 𝑓2 𝑓3 𝑓4 for 𝑛 = 4 factors. Each of the factors has the form

𝑓𝑘 = 𝑥𝑑 +∑𝑑−1
𝑖=0

∑𝑑
𝑗=1 𝑐𝑖 𝑗𝑥

𝑖𝑦 𝑗 for 1 ≤ 𝑘 ≤ 4 where the coefficients

𝑐𝑖 𝑗 are chosen at random from [0, 𝑝). The variable 𝑑 denotes the

degree of 𝑥 and 𝑦 in the factors, i.e. 𝑑 = deg(𝑓𝑖 , 𝑥) = deg(𝑓𝑖 , 𝑦). As
𝐴 is the product of 4 factors, 𝑑𝑥 = 𝑑𝑦 = 4𝑑 . We input 𝛼 = 3, 𝐴 and

𝑓
(0)
𝑖

= 𝑓 (𝑥, 3) for 1 ≤ 𝑖 ≤ 4 to Hensel lifting.

We have implemented our cubic LHL algorithm and Bernardin’s

quartic LHL algorithm in C. In both algorithms, we have imple-

mented Shaw and Traub’s method [20] to perform the change of

base. We previously calculated it using polynomial long division,

but Shaw and Traub’s method performed significantly better. We

used Lagrange interpolation to calculate Δ(𝑘) (𝑥) in our cubic LHL

algorithm. In section 4.1, we discuss how we implemented opti-

mization improvements to Lagrange interpolation.

In Table 1, the second column labelled “Old LHL” is for the

Bernardin’s quartic 𝑂 (𝑑2𝑥𝑑2𝑦) algorithm. The third column labelled

“New LHL” is for the cubic𝑂 (𝑑2𝑥𝑑𝑦+𝑑𝑥𝑑2𝑦) algorithmwhere we used

Horner evaluation and Lagrange interpolation to compute Δ(𝑘) (𝑥).
The fourth and fifth columns labelled “Fast QHL in Magma” are for

our Magma implementation of QHL in Z𝑝 [𝑥,𝑦]. The timings in the

column “Timings 1” occur when we set the four factors to have a

degree of 𝑑−1 in the indeterminate𝑦 and the timings in the column

“Timings 2” are when we set the degrees of both indeterminates

to 𝑑 . This is to avoid any unfair comparisons because QHL takes

significantly longer to execute when the degrees of the factors in 𝑦

are a power of 2. Magma uses fast multiplication in Z𝑝 [𝑥,𝑦] and
fast division in Z𝑝 [𝑥,𝑦] mod (𝑦 − 𝛼)𝑘 .

As the reader can see, our cubic LHL algorithm (column 3) beats

Bernardin’s quartic LHL algorithm from 𝑑 ≥ 2 onward. At 𝑑 = 1024

the cubic LHL algorithm beats the quartic LHL algorithm by a factor

of 15877.48/190.13 = 83.5. In comparison with QHL, the cubic LHL

algorithm beats magma’s QHL by a factor of 3.16/0.06118 = 51.7

(Timings 1) and 6.33/0.06118 = 103.5 (Timings 2) when 𝑑 = 64

and 2974.6/190.13 = 15.6 (Timings 1) and 5599.3/190.13 = 29.4

(Timings 2) when 𝑑 = 1024. The cubic LHL algorithm is faster

than Magma’s fast algorithm at 𝑑 = 2048. Even at 𝑑 = 2048, the

largest polynomials we are computing, Magma’s fast method hasn’t

caught up with our cubic LHL algorithm yet. We are unable to get

any further timings for Magma as the calculations would use more

than 32GB of RAM. Thus, the cubic LHL algorithm is the fastest

algorithm for 𝑑 ≥ 2.

𝑑
Old LHL

O(𝑑2𝑥𝑑
2

𝑦 )

New LHL

O(𝑑2𝑥𝑑𝑦 + 𝑑𝑥𝑑2𝑦 )
Fast QHL in Magma

Timings 1 Timings 2

2 0.10ms 0.06ms 1.16ms 3.44ms

4 0.22ms 0.18ms 7.48ms 17.82ms

8 0.84ms 0.54ms 30.30ms 65.61ms

16 4.82ms 2.12ms 125.22ms 247.44ms

32 48.25ms 10.28ms 619.90ms 1,225.6ms

64 505.64ms 61.18ms 3.16s 6.33s

128 6.002s 401.14ms 17.58s 35.21s

256 76.70s 3.41s (0.12gb) 97.46s 204.27s

512 1,073.8s 25.17s (0.46gb) 553.85s 1,137.71s

1024 15,877.5s 190.13s (1.83gb) 2,974.6s 5,599.3s

2048 NA 1,461.5s (7.32gb) 15,583.3s >32gb

4096 NA 12,614.7s (29.3gb) NA NA

Table 1: Hensel lifting timings for Z𝑝 [𝑥,𝑦] for 𝑝 = 2
31 − 1 and

𝑛 = 4 factors of degree 𝑑 in 𝑥 and 𝑦. NA = Not attempted

Table 2 shows the timing breakdown of the individual algorithms

used during a single run of our cubic LHL algorithm. We use the

same parameters described for the previous benchmarks, except

we only consider the 𝑑 = 1024 case. The factors are in the same

form as described above.

The first column of Table 2, “Procedure” defines each of the

major procedures used in our cubic LHL algorithm. The second

column labelled “Time(ms)” describes the time used to perform each

procedure. The final column “Percentage” gives the percentage of

overall time used by each procedure. As the reader can see, the

most expensive operation is “Change of Base” which uses 25% of

the overall running time.

Procedure Time(ms) Percentage

Change of Base 46,750 24.59

Generate Lagrange Polynomials 890 0.47

CoefficientExtraction 43,350 22.80

Polynomial Interpolation 39,120 20.58

Solving the Diophantine equation 32,250 16.96

Polynomial Evaluation 11,610 6.11

CoefficientUpdate 1,550 0.82

Miscellaneous Operations 14,610 7.68

Overall Time 190,130 100.00

Table 2: Cubic Linear Lift subalgorithm timings for Z𝑝 [𝑥,𝑦]
with 𝑝 = 2

31 − 1. Compares the execution times for 𝑑 = 1024.

4.1 Optimizations for Z𝑝 [𝑥,𝑦]
Wemade two notable optimizations to our C implementation. Firstly,

we used an accumulator to reduce the number of divisions by 𝑝 in

Z𝑝 . Secondly, we implemented an improved version of Lagrange

interpolation. Both changes led to a significant improvement in the

overall execution time of our algorithm.

It is well known that hardware integer division instructions are

much slower than hardware integer multiplication instructions. In

[8], Granlund and Montgomery show how to speedup division by

using two multiplications and several additions, shifts and bitwise

logical operations to divide by 𝑝 . For the “Old LHL” timings in

Table 1, we are using Moller and Granlund’s improved algorithm
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from [14]. For convolutions of the form

∑𝑛
𝑖=0 𝑎𝑖𝑏𝑖 and

∑𝑛
𝑖=0 𝑎𝑖𝑏𝑛−𝑖

in Z𝑝 we obtain a significant speedup by using a double precision

accumulator to reduce the number of divisions by one.

We have implemented our code to store integers that are 64 bits

in size, and we implemented a 128 bit accumulator. Our algorithm

works for primes of size up to 63 bits. We have implemented our

algorithm to use an accumulator whenever 𝑝 < 2
50
. As a result of

this, the product of any two integers will be at most 98 bits in size.

This means we can add at least 2
128/298 = 2

30
products together

before we risk overflowing the accumulator. Implementing an ac-

cumulator reduces the number of divisions for the convolutions∑𝑛
𝑖=0 𝑎𝑖𝑏𝑖 and

∑𝑛
𝑖=0 𝑎𝑖𝑏𝑛−𝑖 from 𝑛 + 1 to 1.

The timings for the column “Old LHL” in Table 1 are for a re-

organization of the evaluation and interpolation algorithm so that

we can use an accumulator method. We also use 0,±1,±2, ...,±𝑑𝑥
2

for evaluation points which allows us to speed up evaluation and

interpolation by a further factor of 2.

Let 𝑐 (𝑥) = ∑𝑑
𝑖=0 𝑐𝑖𝑥

𝑖
be the polynomial we wish to interpolate.

In the following, we assume 𝑑 is even; if not, we add 1 to 𝑑 and use

an additional evaluation point.

It is easy to evaluate 𝑐 (𝑥) in Z𝑝 [𝑥] twice as fast using ± points.

We can write 𝑐 (𝑥) = 𝑎(𝑥2) + 𝑥𝑏 (𝑥2) where 𝑎(𝑥) = ∑𝑑/2
𝑖=0

𝑐2𝑖𝑥
𝑖
and∑𝑑/2−1

𝑖=0
𝑐2𝑖+1𝑥𝑖 . If we have already evaluated 𝑐 (𝛼) = 𝑎(𝛼2) +𝛼𝑏 (𝛼2),

we can compute 𝑐 (−𝛼) = 𝑎(𝛼2) − 𝛼𝑏 (𝛼2) using one additional

subtraction. To also use the accumulator trick, we can compute

𝑎(𝛼2) via the dot product [𝑎0, 𝑎2, 𝑎4, ..., 𝑎𝑑 ] · [1, 𝛼2, ..., 𝛼𝑑 ] and𝑏 (𝛼2)
via the dot product [𝑎1, 𝑎3, ..., 𝑎𝑑−1] · [1, 𝛼2, ..., 𝛼𝑑−2]. For 𝛼 = 𝑖 , the

arrays [1, 𝛼2, 𝛼4, ..., 𝛼𝑑 ] for 𝛼 = 1, 2, ..., 𝑑/2 are computed before the

main Hensel loop so they can be reused.

Let 𝑐 (𝑥) = ∑𝑑
𝑖=0 𝑐𝑖𝑥

𝑖
and assume we have computed 𝑐 (0) and

𝑐 (±𝑖) for 1 ≤ 𝑖 ≤ 𝑑/2. We will use Lagrange interpolation to

interpolate 𝑐 (𝑥). Let

𝐿(𝑥) = ∏𝑑/2
𝑖=−𝑑/2 (𝑥 − 𝑖) and 𝐿𝑖 (𝑥) =

𝐿 (𝑥)
(𝑥−𝑖) for −

𝑑
2
≤ 𝑖 ≤ 𝑑

2
.

The polynomials 𝐿𝑖 (𝑥) are the Lagrange basis polynomials so

we may write 𝑐 (𝑥) = ∑𝑑/2
𝑖=−𝑑/2 𝛼𝑖𝐿𝑖 (𝑥) for some unique 𝛼𝑖 . To de-

termine the Lagrange coefficients 𝛼𝑖 , since 𝐿𝑗 (𝑖) = 0 for 𝑗 ≠ 𝑖 , we

have 𝛼𝑖 = 𝑐 (𝑖)/𝐿𝑖 (𝑖).
In [15] Monagan shows how to efficiently calculate the coef-

ficients 𝑐0, 𝑐1, ..., 𝑐𝑑 using ( 𝑑
2
+ 1) 𝑑

2
multiplications and using the

double precision accumulator, so that only𝑂 (𝑑) divisions are done.

5 CONCLUSION
In this paper, we have developed a new algorithm for Linear Hensel

Lifting (LHL) for 𝑅 [𝑥] where 𝑅 = Z𝑝 [𝑦] which works for 𝑛 ≥ 2

factors and has cubic time complexity. Our work generalizes the

work of Monagan [15] for 𝑛 = 2 factors. We have implemented our

new algorithm in C for 𝑝 < 2
63
. Our C implementation beats our

Magma implementation of fast Quadratic Hensel Lifting for a very

wide range of input sizes.

Our C code is being used by Chen and Monagan [4] to factor

multivariate polynomials in Z[𝑥1, . . . , 𝑥𝑛]. In this context our cu-

bic LHL algorithm beats Bernardin’s quartic LHL algorithm early

enough to be useful.

Our Hensel lifting algorithm does not handle the general non-

monic case. In current work we are studying how to modify our

algorithm so we can factor𝐴 =
∏𝑛

𝑖=1 𝑓𝑖 in 𝑅 [𝑥] when deg(𝐴,𝑦) > 0.

In a multivariate factorization context, if we use Wang’s lead-

ing coefficient pre-determination algorithm from [22], then we

may assume we know lc(𝑓𝑖 ). In this case, if we “attach” lc(𝑓𝑖 )
to 𝑓

(0)
𝑖

(see [7]) we need to modify our construction to compute

coeff (∏𝑛
𝑖=1 𝑓

(𝑘)
𝑖

, (𝑦 − 𝛼)𝑘 ) for 𝑘 ≥ 1.
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A APPENDIX 1: MAGMA CODE FOR QHL IN
Z𝑝 [𝑥,𝑦]

Reference: Algorithm 15.17 “Multifactor Hensel lifting” from [6].We

have modified it to stop when the error is 0 and to lift the solutions

to the Diophantine equation to half the precision. Magma is using

fast multiplication for multiplications in Z𝑝 [𝑥,𝑦], fast division for

the two divisions QuotRem(...) in 𝑍𝑝 [𝑥,𝑦] and fast division for the

integer divisions by𝑚 in reduce(...).
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